Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Biochem Biophys Res Commun ; 704: 149705, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38430699

RESUMEN

The circadian clock in Drosophila is governed by a neural network comprising approximately 150 neurons, known as clock neurons, which are intricately interconnected by various neurotransmitters. The neuropeptides that play functional roles in these clock neurons have been identified; however, the roles of some neuropeptides, such as Trissin, remain unclear. Trissin is expressed in lateral dorsal clock neurons (LNds), while its receptor, TrissinR, is expressed in dorsal neuron 1 (DN1) and LNds. In this study, we investigated the role of the Trissin/TrissinR signaling pathway within the circadian network in Drosophila melanogaster. Analysis involving our newly generated antibody against the Trissin precursor revealed that Trissin expression in the LNds cycles in a circadian manner. Behavioral analysis further demonstrated that flies with Trissin or TrissinR knockout or knockdown showed delayed evening activity offset under constant darkness conditions. Notably, this observed delay in evening activity offset in TrissinRNAi flies was restored via the additional knockdown of Ion transport peptide (ITP), indicating that the Trissin/TrissinR signaling pathway transmits information via ITP. Therefore, this pathway may be a key regulator of the timing of evening activity offset termination, orchestrating its effects in collaboration with the neuropeptide, ITP.


Asunto(s)
Relojes Circadianos , Proteínas de Drosophila , Neuropéptidos , Animales , Drosophila melanogaster/metabolismo , Ritmo Circadiano/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Transducción de Señal , Relojes Circadianos/fisiología , Neuropéptidos/metabolismo
2.
J Comp Neurol ; 531(15): 1525-1549, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37493077

RESUMEN

Insects from high latitudes spend the winter in a state of overwintering diapause, which is characterized by arrested reproduction, reduced food intake and metabolism, and increased life span. The main trigger to enter diapause is the decreasing day length in summer-autumn. It is thus assumed that the circadian clock acts as an internal sensor for measuring photoperiod and orchestrates appropriate seasonal changes in physiology and metabolism through various neurohormones. However, little is known about the neuronal organization of the circadian clock network and the neurosecretory system that controls diapause in high-latitude insects. We addressed this here by mapping the expression of clock proteins and neuropeptides/neurohormones in the high-latitude fly Drosophila littoralis. We found that the principal organization of both systems is similar to that in Drosophila melanogaster, but with some striking differences in neuropeptide expression levels and patterns. The small ventrolateral clock neurons that express pigment-dispersing factor (PDF) and short neuropeptide F (sNPF) and are most important for robust circadian rhythmicity in D. melanogaster virtually lack PDF and sNPF expression in D. littoralis. In contrast, dorsolateral clock neurons that express ion transport peptide in D. melanogaster additionally express allatostatin-C and appear suited to transfer day-length information to the neurosecretory system of D. littoralis. The lateral neurosecretory cells of D. littoralis contain more neuropeptides than D. melanogaster. Among them, the cells that coexpress corazonin, PDF, and diuretic hormone 44 appear most suited to control diapause. Our work sets the stage to investigate the roles of these diverse neuropeptides in regulating insect diapause.


Asunto(s)
Relojes Circadianos , Diapausa , Proteínas de Drosophila , Neuropéptidos , Animales , Drosophila , Drosophila melanogaster/fisiología , Proteínas CLOCK , Ritmo Circadiano/fisiología , Diapausa/fisiología , Relojes Circadianos/fisiología , Neuropéptidos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-37217625

RESUMEN

The fruit fly Drosophila melanogaster exhibits two activity peaks, one in the morning and another in the evening. Because the two peaks change phase depending on the photoperiod they are exposed to, they are convenient for studying responses of the circadian clock to seasonal changes. To explain the phase determination of the two peaks, Drosophila researchers have employed the two-oscillator model, in which two oscillators control the two peaks. The two oscillators reside in different subsets of neurons in the brain, which express clock genes, the so-called clock neurons. However, the mechanism underlying the activity of the two peaks is complex and requires a new model for mechanistic exploration. Here, we hypothesize a four-oscillator model that controls the bimodal rhythms. The four oscillators that reside in different clock neurons regulate activity in the morning and evening and sleep during the midday and at night. In this way, bimodal rhythms are formed by interactions among the four oscillators (two activity and two sleep oscillators), which may judiciously explain the flexible waveform of activity rhythms under different photoperiod conditions. Although still hypothetical, this model would provide a new perspective on the seasonal adaptation of the two activity peaks.

4.
Chronobiol Int ; 40(3): 284-299, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36786215

RESUMEN

Animals possess a circadian central clock in the brain, where circadian behavioural rhythms are generated. In the fruit fly (Drosophila melanogaster), the central clock comprises a network of approximately 150 clock neurons, which is important for the maintenance of a coherent and robust rhythm. Several neuropeptides involved in the network have been identified, including Pigment-dispersing factor (PDF) and CCHamide1 (CCHa1) neuropeptides. PDF signals bidirectionally to CCHa1-positive clock neurons; thus, the clock neuron groups expressing PDF and CCHa1 interact reciprocally. However, the role of these interactions in molecular and behavioural rhythms remains elusive. In this study, we generated Pdf 01 and CCHa1SK8 double mutants and examined their locomotor activity-related rhythms. The single mutants of Pdf 01 or CCHa1SK8 displayed free-running rhythms under constant dark conditions, whereas approximately 98% of the double mutants were arrhythmic. In light-dark conditions, the evening activity of the double mutants was phase-advanced compared with that of the single mutants. In contrast, both the single and double mutants had diminished morning activity. These results suggest that the effects of the double mutation varied in behavioural parameters. The double and triple mutants of per 01, Pdf 01, and CCHa1SK8 further revealed that PDF signalling plays a role in the suppression of activity during the daytime under a clock-less background. Our results provide insights into the interactions between PDF and CCHa1 signalling and their roles in activity rhythms.


Asunto(s)
Relojes Circadianos , Proteínas de Drosophila , Neuropéptidos , Animales , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ritmo Circadiano/fisiología , Proteínas de Drosophila/genética , Neuropéptidos/genética , Neuropéptidos/metabolismo , Encéfalo/metabolismo
5.
Zoolog Sci ; 39(4)2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35960036

RESUMEN

The light cycle is the most powerful Zeitgeber entraining the circadian clock in most organisms. Insects use CRYPTOCHROMEs (CRYs) and/or the compound eye for the light perception necessary for photic entrainment. The molecular mechanism underlying CRY-dependent entrainment is well understood, while that of the compound eye-dependent entrainment remains to be elucidated. Using molecular and behavioral experiments, we investigated the role of timeless (tim) in the photic entrainment mechanism in the cricket Gryllus bimaculatus. RNA interference of tim (timRNAi) disrupted the entrainment or prolonged the transients for resynchronization to phase-delayed light-dark cycles. The treatment reduced the magnitude of phase delay caused by delayed light-off, but augmented advance shifts caused by light exposure at late night. TIM protein levels showed daily cycling with an increase during the night and reduction by light exposure at both early and late night. These results suggest that tim plays a critical role in the entrainment to delayed light cycles.


Asunto(s)
Relojes Circadianos , Gryllidae , Animales , Relojes Circadianos/genética , Ritmo Circadiano , Gryllidae/genética , Luz , Fotoperiodo , Interferencia de ARN
6.
Front Physiol ; 13: 886432, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574472

RESUMEN

Drosophila's dorsal clock neurons (DNs) consist of four clusters (DN1as, DN1ps, DN2s, and DN3s) that largely differ in size. While the DN1as and the DN2s encompass only two neurons, the DN1ps consist of ∼15 neurons, and the DN3s comprise ∼40 neurons per brain hemisphere. In comparison to the well-characterized lateral clock neurons (LNs), the neuroanatomy and function of the DNs are still not clear. Over the past decade, numerous studies have addressed their role in the fly's circadian system, leading to several sometimes divergent results. Nonetheless, these studies agreed that the DNs are important to fine-tune activity under light and temperature cycles and play essential roles in linking the output from the LNs to downstream neurons that control sleep and metabolism. Here, we used the Flybow system, specific split-GAL4 lines, trans-Tango, and the recently published fly connectome (called hemibrain) to describe the morphology of the DNs in greater detail, including their synaptic connections to other clock and non-clock neurons. We show that some DN groups are largely heterogenous. While certain DNs are strongly connected with the LNs, others are mainly output neurons that signal to circuits downstream of the clock. Among the latter are mushroom body neurons, central complex neurons, tubercle bulb neurons, neurosecretory cells in the pars intercerebralis, and other still unidentified partners. This heterogeneity of the DNs may explain some of the conflicting results previously found about their functionality. Most importantly, we identify two putative novel communication centers of the clock network: one fiber bundle in the superior lateral protocerebrum running toward the anterior optic tubercle and one fiber hub in the posterior lateral protocerebrum. Both are invaded by several DNs and LNs and might play an instrumental role in the clock network.

7.
Cell Rep ; 39(2): 110668, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35417715

RESUMEN

Animals display a body temperature rhythm (BTR). Little is known about the mechanisms by which a rhythmic pattern of BTR is regulated and how body temperature is set at different times of the day. As small ectotherms, Drosophila exhibit a daily temperature preference rhythm (TPR), which generates BTR. Here, we demonstrate dorsal clock networks that play essential roles in TPR. Dorsal neurons 2 (DN2s) are the main clock for TPR. We find that DN2s and posterior DN1s (DN1ps) contact and the extent of contacts increases during the day and that the silencing of DN2s or DN1ps leads to a lower temperature preference. The data suggest that temporal control of the microcircuit from DN2s to DN1ps contributes to TPR regulation. We also identify anterior DN1s (DN1as) as another important clock for TPR. Thus, we show that the DN networks predominantly control TPR and determine both a rhythmic pattern and preferred temperatures.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Ritmo Circadiano/fisiología , Drosophila/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster , Neuronas/fisiología , Temperatura
8.
J Comp Neurol ; 530(9): 1507-1529, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34961936

RESUMEN

Drosophila's lateral posterior neurons (LPNs) belong to a small group of circadian clock neurons that is so far not characterized in detail. Thanks to a new highly specific split-Gal4 line, here we describe LPNs' morphology in fine detail, their synaptic connections, daily bimodal expression of neuropeptides, and propose a putative role of this cluster in controlling daily activity and sleep patterns. We found that the three LPNs are heterogeneous. Two of the neurons with similar morphology arborize in the superior medial and lateral protocerebrum and most likely promote sleep. One unique, possibly wakefulness-promoting, neuron with wider arborizations extends from the superior lateral protocerebrum toward the anterior optic tubercle. Both LPN types exhibit manifold connections with the other circadian clock neurons, especially with those that control the flies' morning and evening activity (M- and E-neurons, respectively). In addition, they form synaptic connections with neurons of the mushroom bodies, the fan-shaped body, and with many additional still unidentified neurons. We found that both LPN types rhythmically express three neuropeptides, Allostatin A, Allostatin C, and Diuretic Hormone 31 with maxima in the morning and the evening. The three LPN neuropeptides may, furthermore, signal to the insect hormonal center in the pars intercerebralis and contribute to rhythmic modulation of metabolism, feeding, and reproduction. We discuss our findings in the light of anatomical details gained by the recently published hemibrain of a single female fly on the electron microscopic level and of previous functional studies concerning the LPN.


Asunto(s)
Relojes Circadianos , Proteínas de Drosophila , Neuropéptidos , Animales , Ritmo Circadiano/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Femenino , Neuronas/metabolismo , Neuropéptidos/metabolismo
9.
J Neurosci ; 41(40): 8338-8350, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34429376

RESUMEN

Rhythmic rest-activity cycles are controlled by an endogenous clock. In Drosophila, this clock resides in ∼150 neurons organized in clusters whose hierarchy changes in response to environmental conditions. The concerted activity of the circadian network is necessary for the adaptive responses to synchronizing environmental stimuli. Thus far, work was devoted to unravel the logic of the coordination of different clusters focusing on neurotransmitters and neuropeptides. We further explored communication in the adult male brain through ligands belonging to the bone morphogenetic protein (BMP) pathway. Herein we show that the lateral ventral neurons (LNvs) express the small morphogen decapentaplegic (DPP). DPP expression in the large LNvs triggered a period lengthening phenotype, the downregulation of which caused reduced rhythmicity and affected anticipation at dawn and dusk, underscoring DPP per se conveys time-of-day relevant information. Surprisingly, DPP expression in the large LNvs impaired circadian remodeling of the small LNv axonal terminals, likely through local modulation of the guanine nucleotide exchange factor Trio. These findings open the provocative possibility that the BMP pathway is recruited to strengthen/reduce the connectivity among specific clusters along the day and thus modulate the contribution of the clusters to the circadian network.SIGNIFICANCE STATEMENT The circadian clock relies on the communication between groups of so-called clock neurons to coordinate physiology and behavior to the optimal times across the day, predicting and adapting to a changing environment. The circadian network relies on neurotransmitters and neuropeptides to fine-tune connectivity among clock neurons and thus give rise to a coherent output. Herein we show that decapentaplegic, a ligand belonging to the BMP retrograde signaling pathway required for coordinated growth during development, is recruited by a group of circadian neurons in the adult brain to trigger structural remodeling of terminals on a daily basis.


Asunto(s)
Generadores de Patrones Centrales/fisiología , Ritmo Circadiano/fisiología , Proteínas de Drosophila/biosíntesis , Red Nerviosa/fisiología , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster , Masculino
10.
Front Physiol ; 12: 705048, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34366893

RESUMEN

Circadian clocks prepare the organism to cyclic environmental changes in light, temperature, or food availability. Here, we characterized the master clock in the brain of a strongly photoperiodic insect, the aphid Acyrthosiphon pisum, immunohistochemically with antibodies against A. pisum Period (PER), Drosophila melanogaster Cryptochrome (CRY1), and crab Pigment-Dispersing Hormone (PDH). The latter antibody detects all so far known PDHs and PDFs (Pigment-Dispersing Factors), which play a dominant role in the circadian system of many arthropods. We found that, under long days, PER and CRY are expressed in a rhythmic manner in three regions of the brain: the dorsal and lateral protocerebrum and the lamina. No staining was detected with anti-PDH, suggesting that aphids lack PDF. All the CRY1-positive cells co-expressed PER and showed daily PER/CRY1 oscillations of high amplitude, while the PER oscillations of the CRY1-negative PER neurons were of considerable lower amplitude. The CRY1 oscillations were highly synchronous in all neurons, suggesting that aphid CRY1, similarly to Drosophila CRY1, is light sensitive and its oscillations are synchronized by light-dark cycles. Nevertheless, in contrast to Drosophila CRY1, aphid CRY1 was not degraded by light, but steadily increased during the day and decreased during the night. PER was always located in the nuclei of the clock neurons, while CRY was predominantly cytoplasmic and revealed the projections of the PER/CRY1-positive neurons. We traced the PER/CRY1-positive neurons through the aphid protocerebrum discovering striking similarities with the circadian clock of D. melanogaster: The CRY1 fibers innervate the dorsal and lateral protocerebrum and putatively connect the different PER-positive neurons with each other. They also run toward the pars intercerebralis, which controls hormone release via the neurohemal organ, the corpora cardiaca. In contrast to Drosophila, the CRY1-positive fibers additionally travel directly toward the corpora cardiaca and the close-by endocrine gland, corpora allata. This suggests a direct link between the circadian clock and the photoperiodic control of hormone release that can be studied in the future.

11.
PLoS One ; 16(1): e0245115, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33444354

RESUMEN

Many species show rhythmicity in activity, from the timing of flowering in plants to that of foraging behavior in animals. The free-running periods and amplitude (sometimes called strength or power) of circadian rhythms are often used as indicators of biological clocks. Many reports have shown that these traits are highly geographically variable, and interestingly, they often show latitudinal or longitudinal clines. In many cases, the higher the latitude is, the longer the free-running circadian period (i.e., period of rhythm) in insects and plants. However, reports of positive correlations between latitude or longitude and circadian rhythm traits, including free-running periods, the power of the rhythm and locomotor activity, are limited to certain taxonomic groups. Therefore, we collected a cosmopolitan stored-product pest species, the red flour beetle Tribolium castaneum, in various parts of Japan and examined its rhythm traits, including the power and period of the rhythm, which were calculated from locomotor activity. The analysis revealed that the power was significantly lower for beetles collected in northern areas than southern areas in Japan. However, it is worth noting that the period of circadian rhythm did not show any clines; specifically, it did not vary among the sampling sites, despite the very large sample size (n = 1585). We discuss why these cline trends were observed in T. castaneum.


Asunto(s)
Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Tribolium/fisiología , Animales , Japón
12.
Sci Rep ; 11(1): 951, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441623

RESUMEN

We investigated the impact of basal dietary sodium intake on the dapagliflozin-induced changes in albuminuria and blood pressure (BP) measured at home in patients with diabetic kidney disease (DKD).This was a secondary analysis of the Y-AIDA Study, in which DKD patients with estimated glomerular filtration rate (eGFR) ≥ 45 ml/min/1.73 m2 and urinary albumin-to-creatinine ratio (UACR) ≥ 30 mg/g creatinine were administered dapagliflozin for 24 weeks, and dapagliflozin significantly improved albuminuria levels and home BP profiles. The effects on UACR, home-measured BP, and eGFR were compared between high- and low-sodium intake groups (HS and LS groups), which were created using baseline urinary sodium-to-creatinine ratio of 84 participants with available basal sodium-to-creatinine ratios. At baseline, clinic-/home-measured BPs, UACR, and eGFR, were comparable in the two groups. After 24 weeks, the reductions from baseline in ln-UACR were comparable in the two groups. In contrast, the reductions in evening home systolic BP and eGFR from baseline were larger in HS than in LS (BP: - 13 ± 2.08 vs. - 6 ± 1.88, P = 0.020; eGFR: - 3.33 ± 1.32 vs. 0.37 ± 1.29, P = 0.049). The home BP-lowering effects of dapagliflozin are larger in HS than LS, concomitant with a larger reduction in eGFR, suggesting a dapagliflozin-induced improvement in glomerular relative hyperfiltration in HS.


Asunto(s)
Albuminuria/tratamiento farmacológico , Compuestos de Bencidrilo/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Glucósidos/farmacología , Sodio en la Dieta/administración & dosificación , Anciano , Albuminuria/metabolismo , Albuminuria/orina , Presión Sanguínea/efectos de los fármacos , Creatinina/orina , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Femenino , Tasa de Filtración Glomerular/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
13.
J Neurosci ; 40(50): 9617-9633, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33172977

RESUMEN

Dopamine is a wake-promoting neuromodulator in mammals and fruit flies. In Drosophila melanogaster, the network of clock neurons that drives sleep/activity cycles comprises both wake-promoting and sleep-promoting cell types. The large ventrolateral neurons (l-LNvs) and small ventrolateral neurons (s-LNvs) have been identified as wake-promoting neurons within the clock neuron network. The l-LNvs are innervated by dopaminergic neurons, and earlier work proposed that dopamine signaling raises cAMP levels in the l-LNvs and thus induces excitatory electrical activity (action potential firing), which results in wakefulness and inhibits sleep. Here, we test this hypothesis by combining cAMP imaging and patch-clamp recordings in isolated brains. We find that dopamine application indeed increases cAMP levels and depolarizes the l-LNvs, but, surprisingly, it does not result in increased firing rates. Downregulation of the excitatory D1-like dopamine receptor (Dop1R1) in the l-LNvs and s-LNvs, but not of Dop1R2, abolished the depolarization of l-LNvs in response to dopamine. This indicates that dopamine signals via Dop1R1 to the l-LNvs. Downregulation of Dop1R1 or Dop1R2 in the l-LNvs and s-LNvs does not affect sleep in males. Unexpectedly, we find a moderate decrease of daytime sleep with downregulation of Dop1R1 and of nighttime sleep with downregulation of Dop1R2. Since the l-LNvs do not use Dop1R2 receptors and the s-LNvs also respond to dopamine, we conclude that the s-LNvs are responsible for the observed decrease in nighttime sleep. In summary, dopamine signaling in the wake-promoting LNvs is not required for daytime arousal, but likely promotes nighttime sleep via the s-LNvs.SIGNIFICANCE STATEMENT In insect and mammalian brains, sleep-promoting networks are intimately linked to the circadian clock, and the mechanisms underlying sleep and circadian timekeeping are evolutionarily ancient and highly conserved. Here we show that dopamine, one important sleep modulator in flies and mammals, plays surprisingly complex roles in the regulation of sleep by clock-containing neurons. Dopamine inhibits neurons in a central brain sleep center to promote sleep and excites wake-promoting circadian clock neurons. It is therefore predicted to promote wakefulness through both of these networks. Nevertheless, our results reveal that dopamine acting on wake-promoting clock neurons promotes sleep, revealing a previously unappreciated complexity in the dopaminergic control of sleep.


Asunto(s)
Ritmo Circadiano/fisiología , Dopamina/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , Sueño/fisiología , Potenciales de Acción/fisiología , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Femenino , Masculino , Técnicas de Placa-Clamp , Receptores Dopaminérgicos/metabolismo , Receptores de Dopamina D1/metabolismo
14.
Curr Biol ; 30(16): 3154-3166.e4, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32619484

RESUMEN

We have previously reported that pigment dispersing factor (PDF) neurons, which are essential in the control of rest-activity cycles in Drosophila, undergo circadian remodeling of their axonal projections, a phenomenon called circadian structural plasticity. Axonal arborizations display higher complexity during the day and become simpler at night, and this remodeling involves changes in the degree of connectivity. This phenomenon depends on the clock present within the ventrolateral neurons (LNvs) as well as in glia. In this work, we characterize in detail the contribution of the PDF neuropeptide to structural plasticity at different times across the day. Using diverse genetic strategies to temporally restrict its downregulation, we demonstrate that even subtle alterations to PDF cycling at the dorsal protocerebrum correlate with impaired remodeling, underscoring its relevance for the characteristic morning spread; PDF released from the small LNvs (sLNvs) and the large LNvs (lLNvs) contribute to the process. Moreover, forced depolarization recruits activity-dependent mechanisms to mediate growth only at night, overcoming the restriction imposed by the clock on membrane excitability. Interestingly, the active process of terminal remodeling requires PDF receptor (PDFR) signaling acting locally through the cyclic-nucleotide-gated channel ion channel subunit A (CNGA). Thus, clock-dependent PDF signaling shapes the connectivity of these essential clock neurons on daily basis.


Asunto(s)
Relojes Circadianos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Plasticidad Neuronal , Neuronas/fisiología , Neuropéptidos/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Ritmo Circadiano , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Actividad Motora , Neuronas/citología , Neuropéptidos/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
15.
Endocr J ; 67(9): 957-962, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32554954

RESUMEN

The mechanism for the cholesterol-lowering effect of glucagon-like peptide 1 receptor agonists (GLP-1 RAs) remains unknown in patients with type 2 diabetes. We evaluated the effect of liraglutide on serum lipid profiles, including cholesterol synthesis and absorption markers, during daily clinical practice in Japanese patients with type 2 diabetes. We enrolled 38 patients with type 2 diabetes mellitus who were not treated with a GLP-1 RA (≥20 years of age, HbA1c ≥6.5%). Liraglutide, a GLP-1 RA, was administered subcutaneously once a day for three months to these patients. Blood samples and body weights were collected at 0, 1, and 3 months. Total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) at 1 month, and non-high-density lipoprotein cholesterol (non-HDL-C) and calculated TC at 1 and 3 months, were decreased, while the cholesterol synthesis and cholesterol absorption markers were unchanged by this treatment. In patients with LDL-C levels over 100 mg/dL, LDL-C, non-HDL-C, TC, and calculated TC levels were decreased significantly by the treatment at 1 and 3 months, and the cholesterol absorption marker, campesterol, was decreased at 3 months. The administration of liraglutide for 3 months decreased non-HDL-C and calculated TC significantly, while the cholesterol synthesis and absorption markers were not changed by this treatment.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Lípidos/sangre , Liraglutida/uso terapéutico , Glucemia , HDL-Colesterol/sangre , Diabetes Mellitus Tipo 2/sangre , Femenino , Hemoglobina Glucada , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Triglicéridos/sangre
16.
RSC Adv ; 10(55): 33317-33326, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-35515040

RESUMEN

Ascidiacyclamide [cyclo(-Ile1,5-oxazoline2,6-D-Val3,7-thiazole4,8-)] (1) is a cytotoxic cyclic peptide from the ascidian, or sea squirt. Through structural analyses using asymmetric analogues [Xxx1: Ala (2), Val (3), Leu (4), Phe (5), cyclohexylalanine (6) and phenylglycine (7)], we previously showed 1 to exist in a conformational equilibrium between square and folded forms. In the present study, five new asymmetric analogues [Xxx1: 2-aminobutyric acid (8), 2-aminopentyric acid (9), tert-butylalanine (10), cyclohexylglycine (11) and tert-leucine (12)] were synthesized, and their structures were analyzed with X-ray diffraction and CD spectral measurements. Variable temperature 1H NMR measurements were performed to determine their equilibrium constants and their thermodynamic parameters. The use of two reference peptides made these quantitative studies possible. T3ASC, which contains three thiazole rings as a result of replacing oxazoline2 with thiazole, and dASC, in which the two oxazoline rings were deleted, were respectively used as square and folded reference peptides. The estimated parameters enabled more detailed discussion of the relationship between the bulkiness of substituents and the conformational free energies (ΔG°) of the peptides as well as the relationship between structure and cytotoxicity. The ΔG° values for peptides 1, 2, 3, 8, 9 and 11 decreased with decreases in the bulkiness of their substituents. We suggest that spontaneous folding is promoted as the bulkiness of substituents decreases. Peptides 7 and 12, which have large positive ΔG° values independently of temperature, did not exhibit spontaneous folding at any temperature; that is, their conformations were very stable in the square form. Peptides 4, 5, 6 and 10 had negative ΔG° values, despite their bulky substituents. Peptides with a positive ΔG° value showed cytotoxicity, and peptides with a negative ΔG° value showed reduced or no cytotoxicity. However, peptides 5 and 6 showed cytotoxicity equal to or stronger than 1. Those ten peptides except for 5 and 6 showed a clear structure-cytotoxicity relationship based on ΔG° values.

17.
J Biol Rhythms ; 35(2): 207-213, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31856635

RESUMEN

Daily rhythms of physiology, metabolism, and behavior are orchestrated by a central circadian clock. In mice, this clock is coordinated by the suprachiasmatic nucleus, which consists of 20,000 neurons, making it challenging to characterize individual neurons. In Drosophila, the clock is controlled by only 150 clock neurons that distribute across the fly's brain. Here, we describe a comprehensive set of genetic drivers to facilitate individual characterization of Drosophila clock neurons. We screened GAL4 lines that were obtained from Drosophila stock centers and identified 63 lines that exhibit expression in subsets of central clock neurons. Furthermore, we generated split-GAL4 lines that exhibit specific expression in subsets of clock neurons such as the 2 DN2 neurons and the 6 LPN neurons. Together with existing driver lines, these newly identified ones are versatile tools that will facilitate a better understanding of the Drosophila central circadian clock.


Asunto(s)
Relojes Circadianos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Neuronas/fisiología , Factores de Transcripción/genética , Animales , Catálogos como Asunto , Relojes Circadianos/fisiología , Ritmo Circadiano
18.
Front Physiol ; 10: 1374, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31736790

RESUMEN

It is assumed that a properly timed circadian clock enhances fitness, but only few studies have truly demonstrated this in animals. We raised each of the three classical Drosophila period mutants for >50 generations in the laboratory in competition with wildtype flies. The populations were either kept under a conventional 24-h day or under cycles that matched the mutant's natural cycle, i.e., a 19-h day in the case of per s mutants and a 29-h day for per l mutants. The arrhythmic per 0 mutants were grown together with wildtype flies under constant light that renders wildtype flies similar arrhythmic as the mutants. In addition, the mutants had to compete with wildtype flies for two summers in two consecutive years under outdoor conditions. We found that wildtype flies quickly outcompeted the mutant flies under the 24-h laboratory day and under outdoor conditions, but per l mutants persisted and even outnumbered the wildtype flies under the 29-h day in the laboratory. In contrast, per s and per 0 mutants did not win against wildtype flies under the 19-h day and constant light, respectively. Our results demonstrate that wildtype flies have a clear fitness advantage in terms of fertility and offspring survival over the period mutants and - as revealed for per l mutants - this advantage appears maximal when the endogenous period resonates with the period of the environment. However, the experiments indicate that per l and per s persist at low frequencies in the population even under the 24-h day. This may be a consequence of a certain mating preference of wildtype and heterozygous females for mutant males and time differences in activity patterns between wildtype and mutants.

19.
Cardiovasc Diabetol ; 18(1): 110, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31455298

RESUMEN

BACKGROUND: The Y-AIDA study was designed to investigate the renal- and home blood pressure (BP)-modulating effects of add-on dapagliflozin treatment in Japanese individuals with type 2 diabetes mellitus (T2DM) and albuminuria. METHODS: We conducted a prospective, multicenter, single-arm study. Eighty-six patients with T2DM, HbA1c 7.0-10.0%, estimated glomerular filtration rate (eGFR) ≥ 45 mL/min/1.73 m2, and urine albumin-to-creatinine ratio (UACR) ≥ 30 mg/g creatinine (gCr) were enrolled, and 85 of these patients were administered add-on dapagliflozin for 24 weeks. The primary and key secondary endpoints were change from baseline in the natural logarithm of UACR over 24 weeks and change in home BP profile at week 24. RESULTS: Baseline median UACR was 181.5 mg/gCr (interquartile range 47.85, 638.0). Baseline morning, evening, and nocturnal home systolic/diastolic BP was 137.6/82.7 mmHg, 136.1/79.3 mmHg, and 125.4/74.1 mmHg, respectively. After 24 weeks, the logarithm of UACR decreased by 0.37 ± 0.73 (P < 0.001). In addition, changes in morning, evening, and nocturnal home BP from baseline were as follows: morning systolic/diastolic BP - 8.32 ± 11.42/- 4.18 ± 5.91 mmHg (both P < 0.001), evening systolic/diastolic BP - 9.57 ± 12.08/- 4.48 ± 6.45 mmHg (both P < 0.001), and nocturnal systolic/diastolic BP - 2.38 ± 7.82/- 1.17 ± 5.39 mmHg (P = 0.0079 for systolic BP, P = 0.0415 for diastolic BP). Furthermore, the reduction in UACR after 24 weeks significantly correlated with an improvement in home BP profile, but not with changes in other variables, including office BP. Multivariate linear regression analysis also revealed that the change in morning home systolic BP was a significant contributor to the change in log-UACR. CONCLUSIONS: In Japanese patients with T2DM and diabetic nephropathy, dapagliflozin significantly improved albuminuria levels and the home BP profile. Improved morning home systolic BP was associated with albuminuria reduction. Trial registration The study is registered at the UMIN Clinical Trials Registry (UMIN000018930; http://www.umin.ac.jp/ctr/index-j.htm ). The study was conducted from July 1, 2015 to August 1, 2018.


Asunto(s)
Albuminuria/tratamiento farmacológico , Compuestos de Bencidrilo/uso terapéutico , Presión Sanguínea/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Glucósidos/uso terapéutico , Riñón/efectos de los fármacos , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Adulto , Anciano , Albuminuria/diagnóstico , Albuminuria/epidemiología , Albuminuria/fisiopatología , Compuestos de Bencidrilo/efectos adversos , Biomarcadores/sangre , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Monitoreo Ambulatorio de la Presión Arterial , Ritmo Circadiano , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/fisiopatología , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/epidemiología , Nefropatías Diabéticas/fisiopatología , Femenino , Tasa de Filtración Glomerular/efectos de los fármacos , Glucósidos/efectos adversos , Hemoglobina Glucada/metabolismo , Humanos , Japón/epidemiología , Riñón/fisiopatología , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
20.
Nat Commun ; 9(1): 4247, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30315165

RESUMEN

Circadian rhythms are orchestrated by a master clock that emerges from a network of circadian pacemaker neurons. The master clock is synchronized to external light/dark cycles through photoentrainment, but the circuit mechanisms underlying visual photoentrainment remain largely unknown. Here, we report that Drosophila has eye-mediated photoentrainment via a parallel pacemaker neuron organization. Patch-clamp recordings of central circadian pacemaker neurons reveal that light excites most of them independently of one another. We also show that light-responding pacemaker neurons send their dendrites to a neuropil called accessary medulla (aMe), where they make monosynaptic connections with Hofbauer-Buchner eyelet photoreceptors and interneurons that transmit compound-eye signals. Laser ablation of aMe and eye removal both abolish light responses of circadian pacemaker neurons, revealing aMe as a hub to channel eye inputs to central circadian clock. Taken together, we demonstrate that the central clock receives eye inputs via hub-organized parallel circuits in Drosophila.


Asunto(s)
Ritmo Circadiano/fisiología , Drosophila/citología , Animales , Relojes Biológicos/fisiología , Ritmo Circadiano/genética , Drosophila/metabolismo , Drosophila/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología , Vías Visuales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...